uTensor - Machine learning to the edge

May 09, 2019 //By Wisse Hettinga
uTensor - Machine learning to the edge
uTensor is joining forces with TensorFlow as part of the new TensorFlow Lite Micro project as announced at Google I/O

uTensor was one of the first open source frameworks to bring machine learning onto microcontrollers. uTensor converts machine learning models to readable and self-contained C++ source files, to simplify the integration with any embedded project. It is especially designed for low-power, constrained embedded devices, and it has deep roots in TensorFlow and MbedOS.

A micro-inference engine should be developed alongside a training framework. On resource-constrained devices based on micro-controllers, every bit of computational resource matters. The technologies used in both uTensor and TensorFlow Lite Micro such as FlatBuffer, micro-interpreter, quantization, SIMD, graph-rewriting, and code-generation have made neural-network deployment possible on MCUs.

Machine learning algorithms are evolving at lightning speed. New neural network accelerators are being introduced constantly. uTensor is developed to adapt to this changing landscape. With minimal code, developers can train and deploy TensorFlow models on a wide range of hardware supported by Mbed.

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.