Solid electrolyte enables light batteries to replace structural elements

January 25, 2019 //By Julien Happich
Solid electrolyte enables light batteries to replace structural elements
Getting their inspiration from nature, researchers from the University of Michigan have developed a solid state electrolyte able to efficiently transport zinc ions while being structurally robust and capable of withstanding not only elastic (reversible) but also plastic (irreversible) deformations.

Their paper “Biomimetic Solid-State Zn2+ Electrolyte for Corrugated Structural Batteries” published in the ACS Nano journal describes lightweight rechargeable Zn/Zn+2 batteries with so much increased safety and impact resistance that they can double up as rugged structural elements. To design their solid electrolyte, the researchers tried to mimic the mechanical and electrical properties of articular cartilage, known for their fibrous content, high resilience to deformation and excellent ionic conductivity.

Ahmet Emrehan Emre, a biomedical engineering PhD
candidate at the University of Michigan, attaches a
prototype structural battery to a consumer drone in
place of the original plastic casing.
Credit: Evan Dougherty/Michigan Engineering

They Zn2+ solid and non-corrosive electrolyte compound consists of an optimum blend of branched aramid nanofibers (BNA) for the mechanical part, Poly(ethyleneoxide) (PEO) and Zn(CF3SO3)2 as the ion-transport components. The BANFs replicates the fibrous structure of articular cartilage. They serve as the high-strength components of the composite electrolyte and mimic the stiff collagen nanofibers of cartilage, branching out from an original 200-300nm diameter stem into about five to six fork-points whose branches are 50 to 100nm in diameter.

“Multi-point bifurcation of these filaments facilitates the formation of a fibrous 3D network with a large volume fraction of nanoscale pores necessary for ion transport. Similarly to the structure of soft tissues, the efficient entanglement of nanoscale branches lends high stiffness to the material on both macro- and nanoscales needed for the prevention of dendrite growth”, the paper reads.

As for the PEO and Zn(CF3SO3)2, the authors compare their properties to that of the soft proteoglycan portion of natural cartilage. The researchers then optimized the whole PEO : Zn(CF3SO3)2 : BANFs mixture (PZB) with respect to Zn2+ conductivity and mechanical properties, reaching a 9:3:1 ratio for a solid electrolyte now called PZB-931.

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.