Small robot gets power from vibration: Page 2 of 2

July 22, 2019 //By Nick Flaherty
Researchers at Georgia Tech in the US have created a tiny 3D-printed robot that is powered by vibrations via a piezoelectric actuator.
Researchers at Georgia Tech have created a tiny 3D-printed robot that is powered by vibrations via a piezoelectric actuator.

The micro-bristle-bots are made in a 3D printer using the TPP process, a technique that polymerizes a monomer resin material. Once the portion of the resin block struck by the ultraviolet light has been chemically developed, the remainder can be washed away, leaving the desired robotic structure. 

"It's writing rather than traditional lithography," she added. "You are left with the structure that you write with a laser on the resin material. The process now takes quite a while, so we are looking at ways to scale it up to make hundreds or thousands of micro-bots at a time." Some of the robots have four legs, while others have six. 

The piezoelectric actuators, which use the material lead zirconate titanate (PZT), vibrate when electric voltage is applied to them. In reverse, they can also be used to generate a voltage, when they are vibrated, a capability the micro-bristle-bots could use to power up onboard sensors when they are actuated by external vibrations.

Ansari and her team are working to add steering capability to the robots by joining two slightly different micro-bristle-bots together. Because each of the joined micro-bots would respond to different vibration frequencies, the combination could be steered by varying the frequencies and amplitudes. "Once you have a fully steerable micro-robot, you can imagine doing a lot of interesting things," she said.

Ansari and her team have built a "playground" in which multiple micro-bots can move around as the researchers learn more about what they can do. They are also interested in developing micro-bots that can jump and swim.  The 3D printer can produce smaller robots, but with a reduced mass, the adhesion forces between the tiny devices and a surface can get very large. Sometimes, the micro-bots cannot be separated from the tweezers used to pick them up.

www.gatech.edu

Related articles 


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.