Photonics chip can potentially produce efficient neural networks: Page 3 of 3

June 07, 2019 //By Julien Happich
AI chips
Researcher at the MIT have developed a novel “photonic” chip that uses light instead of electricity, which could be used to process massive neural networks millions of times more efficiently than today’s classical computers do.

Pulses of light encoded with information about the input and output neurons for each neural network layer — which are needed to train the network — flow through a single channel. Separate pulses encoded with information of entire rows of weights in the matrix multiplication table flow through separate channels. Optical signals carrying the neuron and weight data fan out to grid of homodyne photodetectors. The photodetectors use the amplitude of the signals to compute an output value for each neuron. Each detector feeds an electrical output signal for each neuron into a modulator, which converts the signal back into a light pulse. That optical signal becomes the input for the next layer, and so on.

The design requires only one channel per input and output neuron, and only as many homodyne photodetectors as there are neurons, not weights. Because there are always far fewer neurons than weights, this saves significant space, so the chip is able to scale to neural networks with more than a million neurons per layer.

With photonic accelerators, there’s an unavoidable noise in the signal. The more light that’s fed into the chip, the less noise and greater the accuracy — but that gets to be pretty inefficient. Less input light increases efficiency but negatively impacts the neural network’s performance.

Achieving the sweet spot for AI accelerators is done by measuring in how many joules it takes to perform a single operation of multiplying two numbers — such as during matrix multiplication. Right now, traditional accelerators are measured in picojoules, or one-trillionth of a joule. Photonic accelerators measure in attojoules, which is a million times more efficient.

In their simulations, the researchers found their photonic accelerator could operate with sub-attojoule efficiency.


Related articles:

Startup integrates optical processing within data center

Startup reveals prototype optical AI processor

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.